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DETERMINATION OF SOIL PROPERTIES

THROUGH GROUND MOTION ANALYSIS

John Frye
&

Norman Lipner

5 June, 1981

ABSTRACT

A method of calculating in situ one dimensional stress-strain soil

properties from vertical ground motion is presented. The method relies

on the fact that superseismic air blast ground surface loadings produce

ground motions that are very nearly vertical and one dimensional in

character. Therefore the equations of motion that govern the response are

simple and may be integrated to obtain one dimensional stress-strain

relations. Thus, results from tests that 'Incorporate superseismic air

blast surface loading and sensors to measure vertical motion at various

depths in the soil can be used to calculate soil stress-strain properties

directly. The method accounts for multiple records at a given depth and

features techniques for characterizing response histories and interpolating

velocities at depths between those where measurements have been made. As

an example, for the DISC HEST Test I event, conducted in Ralston Valley,

Nevada as part of the MX development program, the site properties are

computed based on the free field data.



DETERMINATION OF SOIL PROPERTIES THROUGH GROUND MOTION ANALYSIS

J. W. Frye1 and N. Lipner 2: M. ASCE j
INTRODUCTION

The ground response to overhead highly superseismic airblast loading

(alrblast shock speed faster than ground shock speeds) is nearly one-dimensional

uniaxial strain and the motions are nearly vertical. Soil properties for

prediction of these motions have typically been determined from dynamic

uniaxial strain laboratory tests. However, the process of extracting soil

samples from the field can disturb the material and, as a result, the laboratory

properties could be different from the in situ material behavior.

An approach to determine the in situ properties is to perform a field

test where the ground surface is loaded by superseismic airblast. Data from

sensors that measure vertical motion at various depths in the ground could

then be used to calculate the uniaxial strain properties of the soil by use

of the one-dimensional equation of motion.

One type of surface loading that has been used to obtain a one-dimensional

response is the DISC (Dynamic In Situ Compressibility) HEST (High Explosive

Simulation Technique) test shown in Figure 1. This test employs a circular

region of explosives that is center detonated. The detonation propagates

outward fast enough that the early-time response to peak velocity is essentially

one-dimensional within some region under the loaded area that is governed by

the disc radius and the soil properties. Because of the finite propagation

velocity, time at any range from the centerline is measured with respect to

the arrival of the overhead airblast at that range.

1. Member of the Technical Staff, Hardness and Survivability Laboratory,
TRW, Redondo Beach, CA 90278

2. Department Head, Hardness and Survivability Laboratory,
TRW, Redondo Beach, CA 90278
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PAIALYSIS FORMULATION

The one-dimensional equation of motion relates the vertical normal

stress gradient to the acceleration of the soil.

303_ - pil (1)

Here x is the vertical coordinate (Fig. 1), a3 is the normal stress in the z

direction (tensile stress is positive), and p is the soil density.

Equation (1) can be integrated with respect to depth from the ground

surface to a depth a to obtain the following equation for stress:

oz _-p(t) +fo ".z (2)

where the constant of integration, p(t), is the surface pressure-time

history, a boundary condition of the problem, and the first time deriva-

tive of velocity, £', replaces the second time derivative of displacement.

The one-dimensional strain, c2 , is the derivative of the vertical

displacement with respect to depth.

C Z (3)

Taking the time derivative of Equation (3) provides the following relation

for the strain rate
3fs a us

a (4)

and integrating Equation (4) gives the following relation for strain in terms

of velocity:

% ft vd

The constant of integration is zero because the strain in the soil is
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measured with respect to the geostatic strain and, therefore, is zero at

time zero.

From Equations (2) and (5) it is seen that if the vertical component

of velocity is defined with respect to time and depth, then stress and

strain may be directly calculated from derivatives of the velocity by

performing integrations with respect to depth and time. The pressure

time history at the surface and estimates of the soil density are also

required by Equation (2).

Evaluation of the integrals of Equations (2) and (5) requires

knowledge of the velocity field for the complete space-time region of

-interest. In a test, motion sensors at only a limited number of depths can

be implanted because of cost, as well as physical constraints. Therefore, a

method must be developed to interpolate from the data available for a-limited

number of depths to the velocity history at any depth.

In many test events, more than one record is availabl-e at some depths,

so that if one sensor is faulty, all of the velocity-time information

concerning that particular depth is not lost. Data records available for

a particular depth will vary from one another due to a number of reasons,

such as variation from one location to another of soil properties and surface

pressure-time histories. In examining the velocity-time records taken at

a particular depth, it is not always obvious that one particular record is

the most accurate and representative of all. Thus, some method of including

all acceptable records taken at a particular depth must be employed in

defining the velocity-time history to be used in the Interpolation process.

Clearly some records that show anomalous results, not representative of

motions that are physically plausable, should be excluded from consideration

Such records might be taken from sensors that either were poorly installed,

3-



were destroyed by the shock loading, or produced records that were

extremely noisy.

The method chosen for interpolating the measured velocity records uses

a transformed coordinate system with a time-like coordinate a that remains

constant with depth along specific characteristics of the velocity time

history. At the beginning of motion, e is always taken as zero; at peak

velocity, s equals 1.0; and at the end of the velocity record, a assumes

some large value such as 10. Other values of a are chosen to follow

percentages of the peak velocity, as shown in Figure 2. Mathematically,

the transformation is as follows:

a, =X

(6)
8 = f(zt)

where z' is the depth coordinate of the new coordinate system.

This transformation is piecewise linear between depths where velocity

records are available. Averaged characteristic information available from

the records at each depth is used. At constant depth, the time-like

coordinate a is related to t through a series of straight line seqments between

a and t values established for particular velocity record characteristics.

Details of the formulation of the transformation and other matters concerning

the interpolation between records at different depths are given in the

appendix.

The interpolation of the velocity between depths where data are

available is done in the a', a coordinate system along lines of constant

a values; i.e., the interpolation is performed with respect to specific

velocity record characteristics. Peak velocities at adjacent depths where

data are available are used to interpolate the peak velocity at in-between

depths. Thus, half-peak velocity data are used to interpolate half-peak velocities,

4



and so on.

In order to establish a unique definition of the velocity history at a

given depth, the velocity record is broken up into a series of segments that

begin and end at specific 8 coordinates. The segments are taken to be the

same at all depths forming a grid work in the z', a space as shown in

Figure 3. The velocity history at each depth and over each segment is

represented as a cubic function with the beginning and end of each segment

having the same velocity value as adjacent segments so that step changes in velo-

city (infinite acceleration) are ruled out. The parameters of the cubic interpolation

functions are evaluated based on a least square fit to the velocity records

at the depth in question.

Interpolation between depths is done using an exponential function

that begins at the adjacent upper depth and ends on the adjacent lower depth.

Extrapolation of velocities to depths above the shallowest depth for which

data are available is performed by extrapolating the exponential interpolation

function derived for the region between the two shallowest depths. Velocity

at depths below the deepest depth for which data are available is obtained,

in a similar manner, from the interpolation function of the two deepest

depths.

Having established a method of deriving unique velocity records for

all depths and times from the measured data, stresses and strains are

calculated from Equations (2) and (5) using central differencing and

standard numerical integration techniques. The results of the analysis

have been found to be rather insensitive to the discretization used in the

numerical analysis. The major factors in the analysis appear to be the

choice of velocity histories and of interpolation segments.

5



ANALYSIS RESULTS

Soil stress strain relations have been calculated from one-dimensional

finite difference calculation results, as a check on the analysis, and from

DISC HEST test data. The finite difference calculation considered two dry

soil layers over a wet soil half-space (Reference 1). The dry soil layers

had linear loading and linear unloading moduli. The loading modulus for

the lower dry soil material was 1 .5 times as stiff as for the surface

layer; the unloading moduli in both layers were about an order of magnitude

stiffer than the loading (Fig. 4). The velocity histories from the calcu-

lation were input into the analysis developed herein, with the stress-

strain curve results shown in Figure 4. For this analysis, velocity

histories were used at every 1 .83 m (6 ft) of depth from the surface down

to 18.29 m (60 ft) and every 3.05 m (10 ft) of depth from 18.29 m (60 ft)

down to 45.72 m (150 ft).

The technique is able to track properties that change with depth and

is able to follow unloading along entirely different slopes than the

loading curve. The unloading results are less satisfactory than those for

the loading portion of the response. However, because the unloading is so

steep, a small change in strain can make a large difference in the slope of

the curve. The results also show that the method predicts a gradual, rather

than a sharp, change in properties with depth. This is attributed to

smoothing and other approximations inherent in the use of exponential and

cubic functions to perform the reqtiired interpolations.

64



When using theoretical results, velocity records are available at

the surface as well as at large depths. With experimental data, surface

velocity histories are not known and histories at deep depths are likely to

be influenced by free surface reflections from outside the loaded area

that produce multi-dimensional response characteristics.

After gaining experience with the technique using analytical results, it

was then applied to data from the DISC HEST Test I event (Reference 2)

conducted in Ralston Valley, Nevada. The HEST cavity radius on this test

was 13.7 m (45 ft), and data was obtained at eight depths down to 15.2 m

(50 ft) (Fig. 5). The data appeared to be relativeiy free of noise, allowing

most of the records to be incorporated in the evaluation of the velocity fieli

history. A total of fourteen records over the eight depths (Fig. 6) were

included in the analysis. Figure 7 shows a family of interpolated velocity

histories obtained from the analysis.

The airblast pressure history was measured at several points on the

ground surface within the HEST cavity. A best fit through the pressure

records (Reference 2) is shown in Figure 8. This pressure history

was initially used In Equation (2) to calculate stress histories at depths

of interest, but unsatisfactory results were obtained. The main problem

was that, at the onset of incipient motion (e - 0) at some depths, the

stress was nonzero because the two terms on the right hand side of

Equation (2) did not exactly cancel. This occurred because the averaged

surface overpressure and the velocity field interpolated from the data were

not completely consistent.

An alternate approach is to compute a surface pressure loading from

the velocity field. Setting the stress equal to zero in Equation (2)



at the arrival of motion at any depth, do yields

d o(t)
0 M .p()+f P 0- ez

d0 (t) (7)
P~t) b adz

A pressure history derived from the ground motion response is shown

in Figure 8 compared with the best fit pressure history. The pressure

histories agree reasonably well in the early time of the motion. The

initial slope of the calculated pressure loading is not as steep as that

obtained from measurements. This is probably due to smoothing of the

velocity histories by the interpolation process and the difficulty of exactly

predicting ground motion at and near the surface from measurements made

below the surface. The impulse histories of the measured and calculated

surface loadings are also shown in Figure 8. They compare very well in the

early time of the motion indicating that the interpolation process averages

out variations in the velocity histories in a manner that preserves the

overall character and energy content of the response. After about 25 ms

of response, the calculated and measured pressure and impulse histories

begin a significant divergence. This can be attributed to the reduction

of the vertical ground accelerations by edge effects. The divergence of

the pressure histories may serve as a time marker for the demarcation of

when two-dimensional response becomes important.
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Examination of the data in Figure 7 shows that peak velocity is

achieved within 25 ms down to a depth of about 8 m. For larger depths,

the time to peak velocity increases with depth at a faster rate than

might be expected for one-dimensional response. Information on properties

at deeper depths can be obtained from two-dimensional finite difference

calculations, however, assumptions are required to obtain the uniaxial

strain properties at the depths because the response is two-dimensional and

essentially only verticai motion records are available.

Figure 9 shows the interpolated uniaxial strain stress-strain plots

obtained from the velocity field and the derived surface overpressure.

The initial slope of the stress-strain curves and the 4 MPa secant modulus

are plotted as a function of depth in Figure 10 and compared with the

seismic velocity profile of the site. The loading properties show relatively

small variation with depth down to 9 m. The unloading properties are not

well behaved, but most of the unloading occurs after the 25 ms of one-

dimensional simulation time.

The initial slope of the interpolated stress-strain curves produces a

modulus that compares better with the seismic results (except very near the

surface) than does the 4 MPa modulus. This is to be expected since the

moduli obtained from seismic measurements are representative of the soil

response at very low stress values. The 4 MPa modulus is consistently

lower than the seismic or initial slope values. This reflects the softening

of the soil with increasing stress, characteristic of cemented granular

soil.

The seismic profile shows a soft soil layer in the top 1.5 m (5 ft)

that is not present in the results of the interpolated stress-strain curves.

It is possible that the material is behaving stiffer than would be expected

from the seismic profile, because of strain rate effects. However, the

9



fact that the interpolated peak surface pressure is lower than (about 15 percent)

the averaged pressure gage data indicates that the near surface motions

were actually larger than those used in the analysis, which would result

in softer near surface properties.

Better results might be obtained by making use of seismic velocity

information in extrapolating velocity field data to obtain surface values.

The second depth that velocity data was recorded in DISC HEST Test I was at

1.5 m, the same depth that a sudden hardening of soil modulus was indicated

by seismic data. Thus the second velocity history occured at a transition

region in soil properties. The velocity response at this depth then

contained information that was more characteristic of the soil below the

transition boundary. Therefore, the extrapolation of motion field to

the surface was influenced by the second seismic layer. An alternate

approach to performing the extrapolation would be to increase the peak

surface velocity until the interpolated peak surface pressure was in

agreement with the data. In cases where it is important to more accurately

define the material properties in this very near surface layer, then gages

at two depths within the layer (such as 0.5 and 1.0 m) should be used in

the experiment.

10



CLOSURE

The purpose of this paper is to demonstrate a methodology for

determining unlaxial strain mechanical properties of soil solely from

velocity time histories obtained from a high explosive field test event.

It is similar to the LASS (Lagrangian Analysis of Stress and Strain)

methodology developed by SRII (Reference 3) for analysis of spherical

motions. However, for the spherical case both stress and velocity data

are needed.

Analysis of in situ field test data is generally the most accurate

technique for determining in situ mechanical properties. The material

property inversion technique described herein represents a first step

in the analysis of the data; the complete development of properties it a

site would consider all available relevant information, such as seismic

and laboratory test results. The properties derived from in situ data

might then be smoothed or adjusted based on auxiliary data, as long as these

changes were within the uncertainties of the in situ analysis. These

revised properties would then be used in one- and two-dimensional finite

difference calculations to verify their adequacy.

11



CONCLUSIONS

(1) Dynamic stress-strain properties of in situ soil may be derived

directly from velocity histories taken from surface pressure loading

tests, using the method described herein, down to depths where the ground motion

is sufficiently one-dimensional. Results have been obtained from experi-

mental data for the DISC HEST Test I event.

(2) Surface pressure histories may be derived from the velocity data for

the duration of one-dimensional response. This can provide a check on the

consistency between pressure and velocity data. The time when the measured

and derived surface pressure loading diverges is an indication of the

duration of one-dimensional response. In the DISC HEST Test I event, the

measured and derived impulse histories were in reasonable agreement out

to about 25 ms.

(3) The interpolation functions used in'the technique are effective in

deriving soil velocity as a continuous function of depth and time. Since

the functions are based on measured rather than hypothesized soil response

characteristics they should be able to be applied to tests with different

soil types with equal success. This approach can also be generalized to

apply to motion fields that are dependent on two spacial coordinates.

12
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Appendix I - Derivation of Coordinate Transformation and Interpolation
Functions

There are a number of characteristic times that are clearly important in

describing a velocity record (Fig. 2). The two times of dominant importance are

the time when the motion begins and the time when the velocity reaches its greatest

absolute amplitude. Other points such as the end of the record and time

where the velocity attains given fractions of the peak velocity serve to

complete a listing of the important characteristic time points of the

record. The points that serve to best describe the records may be assigned

labels that we will denote by the symbol s. For convenience, the labels

can be made numeric and assigned values that increase with time for a given

record. By convention the start of motion is at a=0; the peak velocity

is at a1l.O; and the end of the record is assigned a large number such

as a=lO. Points between the peak velocity and the end of the record

have s values between 1 and 10 and points between the start of motion

and the peak velocity have a values between 0 and 1.

Once a set of e labels have been chosen they can be applied to all

of the records at all of the depths. The value of s remains constant with

depth along a characteristic line connecting similar time points of different

records. At a given depth, points with particular values of e form clusters.

The best estimate of where particular s points ought to fall can be obtained

by calculating mean values.

14



~(z ,a) t (zi, 3) -(A-)

j-i

where t(zia) is the time of characteristic point a at depth z, and record j;

Z(zis) is the average time of characteristic point a for depth zi; and

i. is the number of records at depth z..

To estimate values of s between depths where records exist, a straight

line can be drawn between the average time of the various a labels for

existing records. In this way, a family of segmented constant a curves

.may be obtained, which can be considered as a new time-depth coordinate

system. Specific features of the velocity response history, for each

depth, occur at constant values of the time like a coordinate. The symbols

of the new coordinates z',8 are related to the z,t coordinates by the

following transformation relations.

z' B (A-2)

8 - f('-z t)

In order to further define the function f(z=t) the variation of e as

a function of t at a given depth must be specified. The simplest choice,

and the one that will be shown here, is to let a vary as a linear function

of t between each of the labeled values of a. The linear function has the

advantage that it guarantees that a unique mapping of 8 onto t coordinates

exists and vice versa. This linear relation between 8 and t is illustrated

-. C



in Figure A-1 and shown in equation form below

8 = s8' M + (a (i + i ' - a r.) )J rti'8(s":) )] (A-3)

Vi (, a ( i + )) _ M

for s,, ) M t < (X,$:(i + ])

where i is the value of 8 at the i'th characteristic point on the

velocity history. Equation (A-3) can be rearranged to give the solution

of t as a function of 8.

t ,, (  )  + [ ( + f(X 8-8 M(A-4)

(8 (i+2).8 (i)

for a M < a 5 8(i#+1)

The terms (z( *)) are linear functions of depth. In equation form

the relation for 44,8 I )) is

f() M [(",z M )-J(J0 M](z-z)( X 8 ~ ' ( - A -5 )

for Xj < < s

Equations (A-3) and (A-5) define the function f(zt) of equation (A-2).

The inverse transformation equation is

X =3 (A-6)
t , g( ', 8)

The advantage of the coordinate system is that it provides a convenient

framework for interpolating velocities between depths. Points at 8-1

will be related to peak velocity values only; points with 8-1/2 will be

related to velocity values that are at 1/2 of the peak value, and so forth.

At each depth a variety of records are typically available. For

those records at a given depth that are valid, we have the problem of

forming a function that is representative of the velocity response

history. Since the records are complex it is impractical to consider

16



using one equation to represent the entire time history at a given

depth. An equation of this kind would likely be complicated and might

vary in form depending on the depth. A more realistic approach is to

segment the velocity record and treat each segment independently of the

other but at the end points of a segment have velocity values that match

up with those of adjacent segments. For convenience we will require that

common a values be used to define segment boundaries. It is usually better

to have a larger number of segments to define the history at the beginning

of the motion than at the end of the velocity record. The time history

at the beginning of the motion changes more rapidly than at the end and

thus should be more carefully described.

Lagrangian interpolation functions are particularly well suited for

establishing the velocity histories for the various segments of the response

at a particular depth. These kinds of functions can be readily defined to

any desired order, but the higher order functions have unfavorable properties.

Since the function must describe the velocity history over only a segment of

the total time of the record, a cubic function should be adequate to give a

good description of the required motion. The general form of a cubic

Lagrangian interpolation function is as follows:

ai N -a)(a. (aU-) i  (air-)(,is)(4-8) vi
S(ai2 _a- ai. -a. ) (ai4-ail) +(ail..i Cai3"-i2) a-a

(A-7)+(ai,-Wa i2-s) (a i4-)'vi (aixe (ai2e ai-)vi.

W. i.Ei-) aie(ail-ai3) (ai2-aiJ11(ai4-aij) (ai,"a14)(ai2-ai,) (ai,-aiU)

Here vi,,, vii2, vii and vii4 are the velocities at each of four a

coordinate locations ail, ai2. ai3 and a 4 within segment i and at depth j, and

wi is the function defining the velocity history for the i'th segment and

J'th depth. The locations ail and ai4 will be considered to occur at the

17
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beginning and end of segment i.

At the point where a is zero, the value of velocity is zero also.

This is always true by definition since the a-0 point is taken to be

the point in time where the motion response begins. Thus, for the first

interpolation segment between a-0 and -av, where ei is the value at the

end of the first segment, the value vijl is zero. The values "i,2, vij3

and vi.4 are still unknown.

For any given time history at a particular depth, errors will

occur between the velocity given by Equation (A-7) and the time history

value. For a given value a the error can be written as

= Va ka) - wtC/() (A-8)
or

Zk(8) - V.k(e) - h i2lij1 - hi2 - hU V'.3 - hiU0ij 4  (A-9)

where V (a) and Sj(a) are the velocIty and velocity error, respectively,

for time history k at coordinate a and depth j and

(ai2-°) (a'3-) (ai4-°)
hi (ai2-a(a ai3.-a il Hai.ail)I

(ail-o) N3-8) (ai-)
i2 -"(ail.ai))(aj-ai)(ai4-ai)

(A-10)

S(a2 -aj (ai-ai) (a(A-)

(ail-*) (ai2-).. (a 13-8)
1- (ail -ai 4 )(aiU-ai4 ) (aij-ai4 )

The error value I (a) may be either positive or negative; however,

only the absolute amplitude of the error value is of importance. The

square of the error value IEA (a) is always positive and is then a better

1S



error measure for the purposes of Judging the ability of the function w.k(8)

to fit the velocity-time response V.k ().

The total error is not just that measured at one coordinate value

for one record but is the integral for all points s over the segment

summed for all of the records available at a given depth.
- k3 j E s (A-li)

-i J E 'k o
i-i

ETji [V. (s)-hi vi-h.2v.-h A j-hi v.. 2 (A-12)

We must select velocities Vij 2a ii." and vij4 that minimize the total

error E ... We will assume that the value vi is always constrained byTji&ij

continuity requirements with segment i-i. If we evaluate the segments in

order starting with i-i, we need only match the constant v for segment

I with the constant v jl for segment 2 to preserve continuity of velocity

between segment 1 and 2. The constant v ji is always zero since it corresponds.

to the beginning of motion. In evaluating the constants for segment 1, we

need only find values for v 2j2-' 1j,3 and vlj 4 . If lj 4 is set equal to

V2jl then for the second segment only the values v2j2-, V2j3 and v2j4 need

be evaluated. The process can be continued for all of the segments.

The positions al and ai4 then must fall at the beginning and

end of the segment. Thus ail - ei. 2 and ai4- i . The points ai2 and

a, can be chosen as equally spaced along the segment. Thus

ai '1i-2
a.: -at_
ai,2 " i-l * tli-ai-Xl

S,-I + 2 
(A-13)
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The error function ETji is always positive and is a quadratic

function of the terms vij2, Vij3 and v i-4  It follows that its minimum

occurs where the derivatives of Tji with respect to v i 2, vii3 and vij4

are all zero. These conditions produce the equations for the determination

of the unknown velocity constants.

E- V.2kj1 0 'V + hh

-i (A-14)
h h.hv ]dei2 z4 i14

n.

= 0[-V'khi3 + hiihi3vij, + i2hi3vi'j2 + i3vijS

avij3 -I (A-15)
.h h. V Ida

i3 U ij4
+ h.1hiij +]h

3H E 0 [-Vokhi 4  i4vij i2 i4ij2
V id4  k-1 i-1

;+ h h hv + h2 v Jda (A-16)

Evaluating each term of the summation and integration processes of

Equations (A-14), (A-15) and (A-16) separately and placing terms of known

value on the right hand side of the equation with terms of unknown value

on the left hand side of the equation produces the following results:

22vij2 + 023vij3 + 024vij4 = F2

o23 ij2 + 033 vij3 +o 34vij4 -F3  (A-17)

o 24vj2 + 34vij3 + 04 4 "V 4 - P4

20



where n2 . n .
h22do (A-18) - h2 d (A-23)

022 2 44 iU

n.

023 hi2hido (A-19) F2  (V k h i-hi hivi) (A-24)

I k fA.- I
ihn.h

at i f h (A-21A 7 4 ae fa etfhile iinar4eao)ds (A-26)

k= 'i-1 -
n2.

034 f hih4 dov (A-22)
k-1 8i-

Equations (A-17) are a set of three linear relations with constant

coefficients and three unknowns that can be readily solved. The solution

is not a major problem once the constant coefficients c22. 023 , etc., and

the right hand side constants F2, F3 and F4 are known. However, these

constants require an integration that is not trivial. The functions hil,

hi 2 , hi3 and hi 4 are not simple, and the velocity functions V.k are typically

defined at a finite number of points rather than in a continuous manner

due to the digital definition of the record. The integrations for the

coefficients of the equation can be carried out numerically with no difficulty

since the functions are defined for all values 8 within the segment. A

standard procedure for performing the numerical integration is to divide

up the segment into a large number of intervals, and then evaluate the

integral based on the function values at the beginning and end of each of

the intervals.

For the integration of the constants F2. F and F4 , it will be necessary

to define values of V k at points s where digitized velocity data are undefined.

This problem is resolved by assuming that the velocity in each record varies

linearly between the defined values. Figure A-1 illustrates the assumed
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variation of the velocity record with respect to 8 and time. By making the

assumption of linearity between the defined velocity record points, the

velocity record becomes in effect defined at all points and the integrations

of Equations (A-24), (A-25) and (A-26) can be carried out to obtain the

constants F2, F3 and F4 .

With the determination of the constants vijk for all segments at

all depths, a set of velocity records are available at each depth that

are representative of an optimal average of all valid velocity records.

The problems now remaining are how to interpolate between depths where

velocity records are recorded and also how to interpolate from the

velocity record at the shallowest depth up to the surface and to depths

below the deepest where data is available.

There are any number of schemes that could be applied to the inter-

polation of the velocity records between depths. G0e could use linear,

quadratic, cubic or higher order polynomials, or one could use functions

that are appealing on a physical basis. Since some characteristics of

velocity histories are known to decay in an approximately exponential manner

with depth within a given material, exponential functions should provide

useful vehicles for interpolating the velocity records. After some experi-

mentation, it was found that the exponential functions in fact produced

more favorable results than the polynomial functions. The major draw-

back to the polynomial functions is their tendency to oscillate. This

oscillation produces velocity responses that can increase with respect

to depth instead of decrease even though all of the points used in the

Interpolation show a decrease in velocity with respect to depth.

The simplest type of exponential fit involves placing an exponential

function between two points. Suppose it is required to determine the
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variation of velocity between depths j and j+1 along a time-like coordinate

line s. Using Equation (A-7), the velocities w,(j+l) and wij are obtained.

The equation must then satisfy the following constraints.

(a+bz 1.)
1.3 e (A-27)

Wi(j+ 1 ) = e (abJ+1)

The constants a and b are unknown and zt and a. are the depth
j 3+1

values at depths j and j+1. The equation can be solved for a and b by

taking the log of both sides of the equation.

log w. a + b
(A-28)

log Wi ) a + bz+ 1

Solving for a and b produces the following

z; log Cw-) - t{ log CWi-))

a - i(j#1) (A-29)(z' - 1)i+i1 17,

log (Wicj+l) log (wij)
b = - - (A-30)

(Z - !)

Knowing the constants a and b, the velocity w(z') is solved from

the relation

Se(aIbz) (z -  z < zt) (A-31)

A special problem arises when the velocities are negative or change

sign between depths. In the case of negative velocities w and wi(.j+) in

Equation (A-29) and (A-30) are replaced by absolute values and the sign of

the right hand side of Equation (A-31) is made negative instead of positive.

In the case where the velocity changes sign a new velocity term w'(,') is

defined by adding or subtracting from ,(z') a constant equal to twice the

absolute value of the velocity at the lower depth point.
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w'(z') - Li(z ') + (A-32)

For instance If w(z'.) is negative and w(z'. ,) is positive then 2w ts

subtracted from w(z') to compute w'(z'). w(z l.+) would then be equal to

- wi(j+1) . The experimental interpolation is computed in terms of w'(t')

which always has the same sign. w(z') is calculated from w'(tl') by appro-

priately adding or subtracting the constant 21wi(j+z). from w'(z').

w(z') = '(z') T 2 Wi~j+l) (A-33)

The selection of the constant 21wi(j+2)I is arbitrary but is not a

critical one since sign changes in velocity occur at late times in the

velocity histories where soil motions are not critical in determining loading

slopes of the soil stress-strain behavior.

To extrapolate velocities to the surface, the velocity records of

the two shallowest depths must be used. The only piece of information

available at the surface is the time of the start of the pressure loading.

The first s label line at 8=O can then be drawn from the first depth to

this point at the surface. The a label at s=l should fall no more than

a millisecond behind the label for a=O since the rise time of the blast

loading is very short. The a labels falling after 8-l can be extended

up to the surface based on their slope between the two shallowest depths.

These considerations are illustrated in Figure (A-2).

Having established the a coordinates for extrapolatinq the velocity,

it remains to establish how the velocity varies in the upper layer

of soil. The recommended approach is to simply extend the exponential

velocity fit be ween the two shallowest depths. If the exponential form

of the function has a physical basis then this form ought to be the best

possible to use given no other information about the velocity in this
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region. In a similar manner the two lowest depths with data are used to

extrapolate down below the region where information is available.

The velocity time history for all times and depths is thus obtained

by three fundamental steps. First, a coordinate transformation between

zt and z',o coordinates is established where certain a values relate

to particular features of the velocity-time record. Second, a set of cubic

Lagrangian velocity functions are established at each depth to fit a set

of velocity records using a least square error criteria. Third, an

exponential function is used to extrapolate velocity values from the

Lagrangian function along lines of constant a between depths where the velocity

functions are defined.
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Appendix II - Notation

The following symbols are used in this paper:

4aizi2, i3a i4 -time-like s coordinate locations within interpolationsegment i.

a,b - Unknown constants in the evaluation of the exponential
function used to interpolate between depths.

c.i .. coefficients of set of linear equations used in leastsquare solution for vii k .

do(t) a shallowest depth at time t where soil motion and
stress due to soil motion are zero.

Ejk(a) - error between velocity record j at depth k and
Lagrangian interpolation function for time-like
coordinate a.

f(z,t) = function defining time like coordinate a in terms
of a and t.

g(z',a) - function defining time t in terms of z' and a.

ill hi2,hi3 hi 4 - components of Lagrangian interpolation functions u.).

ni a the number of records at depth i.

p - pressure at surface

8 - time-like coordirate that remains constant with depth
for particular features of the velocity response
history.

8i-- gi. 0 time-like coordinates at the beginning and end of
interpolation segment i.

t - time

i(si),) a the average time of characteristic point 8 for
depth zi

t (z.,s) a the time of characteristic point 8 for depth zj and record j.

u. - displacement in vertical direction (positive direction
is up).

V k(8) • velocity of record j and depth k for time-like
coordinate 8.
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Appendix 11 o Notation (continued)

V velocity in vertical direction (positive directionis down).

u(I u, 3, 4 m velocity values used with Lagrangian interpolation
function for interpolation segment i at depth j..

w..(#) - Langrangian interpolation function written in terms
of time-like coordinate s for interpolation segment i
at depth j.

z - vertical coordinate (positive direction is down)
[((,t) coordinate system].

z' - vertical coordinate (a',*) coordinate system

p - soil density

ax - normal stress in x direction (tensile stress is positive).
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